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RELATION OF THE ONE-PHASE STEFAN PROBLEM

TO THE SEEPAGE OF LIQUIDS AND

ELECTROCHEMICAL MACHINING

Joel C. W. Rogers

1. Formulation of the Problems

For several reasons, I have recently been interested in the

problem of seepage of liquids through a dam. First, my experi-

ence with algorithms for computing generalized solutions of other

hydrodynamic free boundary problems (water waves, Ref. 9) has nat-

urally led me to the question as to the applicability and useful-

ness of such methods for the dam problem. Second, the "Baiocchi

transformation" which has been used effectively to solve some free

boundary problems of seeping liquids is reminiscent of another

transformation, relating the steady state of a one-phase Stefan

problem to a time-dependent free boundary problem arising in the

theory of anodic smoothing (Ref. 8), and the possibility that the

two transformations might have a common origin has intrigued me.

A third reason is that, In the second announcement of this inten-

sive seminar, I was billed as discussing "numerical methods" and

the dam problem, which is related through the Baiocchi transforma-

tion to other free boundary problems in whose numerical solution I



have participated (Refs. 2-5), seemed like an apt problem to

discuss. Finally, there is no better forum In which I can discuss

this subject than this one in Pavia, where so much work on the dam

problem has been done.

The format of this paper is as follows: In the remainder of

this introductory section we will formulate, in a cursory fash-

ion, the free boundary problem associated with the seepage of a

liquid, as well as variants of the one-phase Stefan problem; for

these we will also provide algorithms which have been used to

effect their numerical solution. The next section will contain

a discussion of the time-dependent porous flow problem, its rela-

tion to the time-dependent anodic smoothing problem, and some

comments about the numerical solution of the seepage problem. In

a third section we examine the solution of the steady state

porous flow problem for rather general dam shapes in greater

detail; we propose an algorithm for the solution of the problem

and make some tentative remarks pertinent to the question of error

estimates for the approximate solution generated by the algorithm.

A final section indicates briefly a possible generalization of

this work. Owing to time limitations, the results I report in

this paper are not as complete as I would like them to be, and I

apologize in advance for this incompleteness. Nevertheless, if

the perspect've offered in this paper usefully complements other

work on the dam problem and thereby contributes to its solution,

I will consider the paper to have served its purpose.
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By the one-phase Stefan problem in a bounded region (Refs.

5, 8), we will mean the problem of finding the solution of the

equation

ut a Af(u) , x D , 0 < t < , (.a)

subject to boundary conditions

Lf(u) - 0 , x D , 0 < t < (1.1b)

and initial conditions

u(x,O) uo , x E D , (1.lc)

where L is an appropriate linear operator and the function f is

given by

f(u) = max(u - 1,0) . (1.2)

Under most conditions of interest, the following algorithm

suffices for the calculation of u(x,t) (Refs. 4, 5, 8):
i u(n-r) ~ un  (1.3a)

u° = Uo , (1.3b)

n+1 un + (SI() - 1 )f(un) , (1.3c)

where the operator SI(T) is defined by

C:(T) -- Sl(r)t o  (1.4a)

when E satisfies

Et . At , x Le D , 0 < t < T (1.4b)

L& a , x 9D , 0 < t < , (1.4c)

E(O) g x cD . (1.4d)

We shall refer to the algorithm (1.3) as algorithm I, A steady

state u exists, and algorithm I may be used to calculate u.
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A variant on the one-phase Stefan problem which has a more

direct connection to the dam problem is the fol'towing set of con-

ditions satisfied by the function
t

v(x,t) - f(u(x,t')dt' (1.5)

when

uo(x) > 1 for x e n(O) D , (1.6a)

u0 (x) 0 for x c D - Q(0) (1.6b)

vt &V + U0 - 1 , X C (t) , 0 < t < , (1.7a)

v D0(t).aD , o < t < , (1.7b)

Vaa(t).aD ' 0 , 0 < t < , (1.7c)

Lv - , x aD , 0 < t< , (l.7d)

V(X,0) - 0 , Xc D , (1.7e)

which has the property that

supp v(x,t) 9 (t) c D , (1.8a)

l(tl) ' n(t 2 ) for tI _t2 (l.8b)

v and Vv are continuous in P . (l.8c)

Obviously, we may use (1.5) and algorithm I to calculate v. How-

ever, problem (1.7) is of a type which occurs in the theory of

oxygen transport in tissue, and the following algorithm may be

used to calculate v(x,t) (Ref. 3):

v(nT) - Vn , (1.9a)

v° - 0 , (l.9b)

vn+ * M max(S 2(i)vn - T,0) , (1.9c)

where S2 (t) is defined by

E(-) s2()o (1.lOa)
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when E satisfies

Ct • A& + u0  X D , 0 < t <

L& = 0 , x e3D , 0 < t < T , .c

t(0) - &o X c D . (1.10d)

We refer to the algorithm (1.9) as algorithm II. For this algo-

rithm an explicit error estimate is available (Ref. 3). It is

sup Iv(x,nt) - vn(x)l (1.11)

In a system of coordinates (xj) in which the gravitational

acceleration is unity, an irrotational and incompressible flow in

a porous medium, assumed to be an open set D, is given by a veloc-

ity potential j satisfying the equations

--z- T -- (Vj) 2 , x (): , o< <(1 .12a)

A=o , x () , o < t , (1.12b)

p =- 0 in D - a(f) (1.12c)

where p is the pressure and a Is the potential for a frictional

drag force on the flow. In the dam problem in N dimensions,

D RN' x(0,-) , (l.13a)

and with SD decomposed as

3D =D 0 u aDR u aDI  , (l.13b)

the following boundary conditions are imposed:

p - 0 on 3Do , (1.13c)

p * ZR - z - hydrostatic pressure,

or more generally p - PR > 0 on aDR, (1.13d)

n Vi is prescribed on aD, . (1.13e)
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Making the further decomposition 3DI - D I u 3D1 2 where

aDI 2- supp 2n1 , we require that
DI 3H(t) :,DR u 3D12  " (1.13f)

The only case of physical importance is the case

p > 0 throughout D . (1.13g)

This constraint should be viewed as a restriction on the types of

inflows and outflows which may be prescribed on 3D1 in (1.13e).anI

A case frequently considered is that for which D I is imperme-

able: D 12 = 0. In the literature, many authors have made the

further assumption that 3DI = B0 , where

Bz0  {(x,z) E CL(D)jz = Zo} (1.14)

iDR is that portion of 3D in contact with a reservoir of pre-

scribed surface height zRD and z < zR on 3DR. We assume that p,

given on 3Do u aDR by (.13c) and (1.13d), has bounded derivatives

on aDo u 3DR* The boundary of i(t) is decomposed as

3fl ao DUa-f (1.15)

Boundary conditions on an f are

p = 0 , x E af(t) , 0<tc , (1.16)

and points x(t) on a f(i) move with the velocity

dx
d = (1.17)dt

An Initial value problem for the flow in D would have as its

object the determination of a solution (¢(),(t)) of (1.12)-

(1.17) from the initial data (;(O),n(0)). However, this problem

will not generally possess a unique solution. The reason is that,
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for an irrotational Incompressible flow in a region D, one is

free to specify not only the velocity potential where the density

is nonzero, but also the density where the flow enters D. In our

problem the velocity field is given by ' where it is specified,

and the density (which essentially takes on only the values 0 and

1) is given by specifying the region ?ff) occupied by fluid.

Accordingly, given a flow region a(t), we are free to allow fluid

to enter anywhere on 3D0 - 3(2Ct), thereby augmenting the flow

region. The restriction (1.12c) only limits the types of such

inflows to masses of fluid in free fall in a frictional medium.

Such a flow can be found by solving (1.12a) with p - 0, yielding

o(xt)- e)'( °)y • x - I/ (l - e-'(' °))z + constant
(1.18a)

in a region n0(i) moving with the fluid with the spatially

constant velocity

V o - y e "m( ' ' 0  - t.( - e a ( ' °)) (1.18b)

and making its appearance at time !a In D at points of

3DO - a3(1 0 ) for which n • y < 0. Denote the augmented region by

5+(t) - (T) U No() (1.19)

It follows from our discussion that the velocity potential (E)3P o)
defined in +(T) will have the property that -n < 0 for some

point on 3+(t0 ) n D0 . We can make the solution of (1.12)-

(1.17), subject to given initial conditions, unique, by requiring,

for a given decomposition

3Do 3Dl u 3D2  (1.20)

of 3Do, that for > • 0

7 (1.21a)



0 , x E (ai 3I0.21 a)an -

and

a D2 (1.21b)

In flow through a porous medium, the case of interest is

that in which the frictional drag coefficient a is so large that

the dependent variables describing the flow change insignificantly

over the time 1/a. We may think of 1/a as a "relaxation time"

during which the flow assumes the asymptotic form associated with

the limit c - -. The actual asymptotic parameter is a2a, where

a is a characteristic dimension of the dam D.

Because of the large drag force, it is clear that we will be

dealing with a very slow flow, and that in the limit as a +

there will have to be some balance in (1.12a) between the drag

potential ao and the potential of the gravitational and pressure

forces, z + p. Thus, we shall work with the dependent variable

0 = a$" (1.22)

Since the relaxation time is 0(1/a), we may investigate the

phenomenon of relaxation by working with the independent variable

t a . (1.23)

Then at a point on aaf , using (1.16), (1.17), and (l.12a), we get

for the rate of change with time of € for a point moving with the

fluid,
d__ - z - € +.21- (V)2 -z - € (1.24)

do

while from (1.17)
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a2'z 0 (1.25)

Accordingly, the asymptotic solution of (1.24) and (1.25) when

*(O) and z(O) are given, for times t=0(1), is

*()*-z(0) + e- ( W0) + z(O)) .(1.26)

It follows from (1.17) and (1.22) that the primary features

of the flow will develop, and in particular a steady state will

be approached, in times O (a). Consequently, we shall study

the flow with the independent variable

t = !/a .(1.27)

From (1.24)10.26) we infer that on 3Pf~t W 3f(tm).

*=-Z + 0(1/a2) ,(1.28)

and from

dx
T- V (1.29)

we see that after a time t = 0(l), the error in the location of

the free boundary will be 0(1/x2 ) if we use instead the boundary

condition

0 ZX E asf~ M 0 <t< ~ (1.30)

As (I ~ we can use 1.12a), (1.12b) and (1.22) to get

p Z -*-z , x E Q(t) , 0 < t < (1.31a)

&P 0 X x SIM~) 0 < t < , (1.31b)

p 0 on BD0  (1.31c)

P= PR >O0on 8DR (1.31d)

n *vp prescribed on aDIn an(t) ,(1.31e)

p - 0 on anf(t) ,(1.31f)
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and Mf moves with the velocity

- Vp - k (l.31g)

As before, we restrict our attention to problems for which

p > 0 , X [ 0 < t < , (1.31h)

and we require

ap(t) a R 2I  (l.31i)

Finally, to insure uniqueness, we use the conditions (1.21) in

the form
-9.

_ k .n , x c a(t) n aD1  , 0 < t < 0 , (1 .31j)

an(t) aD2  , 0 < t < . (1.31k)

For the rest of this paper, we will consider (1.31) to be the

time-dependent version of the dam problem. This free boundary

problem is very similar to the problem for the electrostatic

potential in the theory of anodic smoothing (Ref. 8), and in fact

the two problems would be identical, were it not for the term -k

in (l.31g), and the different boundary conditions imposed for p

on the "cathode" surface DR u D

Remark 1.1: If we consider the evolution of a front in an inl-

tially dry porous medium abutting reservoirs, it will follow from

(l.31g) that the initial velocity of the front is unbounded. This

reflects an error in the approximation (1.30), which only holds

after a time t 0(1/a), and also an error in using the hydro-

static assumption (1.31d) for the reservoirs, as this breaks down

during the initial phase of the flow.
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In the beginning of the introduction to this paper, we

mentioned the possible applicability of algorithms for other

hydrodynamic frec boundary problems to the solution of the time-

dependent dam problem. Essentially in those more general algo-

rithms the free boundary, the motion of which is given by (1.29),

is determined by looking for contours p = constant where p

satisfies an equation like

Pt + VU VP = 0

and p has a jump at the free boundary. The more general hydro-

dynamic algorithms do not appear to have any utility for the

solution of the dam problem.

2. Comments on the Time-Dependent Dam Problem

A monotonicity result can be deduced immediately for

solutions of the dam problem (1.31). We formalize it as a lemma.

Lema 2.1: Suppose we have two solutions pi and P2 of

(1.31) for which P11aD RUADO _ P2 aDRUADO '8n I18DI L T'P2 6 ,

and Q1( 0 ) D n2 (0). Then Q1 (t) D S12 (t).

Proof: If for some t, we have sn1(t) f sn2 (t), then at some

tj < t a point of anf2 (ti ) first passed through anf,(tl). Then

njz(t0 )  02(t1 ) and 3 a point P c aofj (tj) n 3n f 2 (tj) for which

11



ap1  DP2
- - t 1  <-_ Pt

But A(PI - P2) - 0 in $12(t1), P1 - P2 1 0 on

l2(tl) n (aD0 u 3DR), "an(pi - P2) > on a92 (tl) n DI, p, - P2 0

on ailf2(tj), and (p, - P2 )(P,tl) 0 0. Hence we get

aPi 3P2

- - (P'tl) > -3n('1

giving a contradiction and proving the lemma.

It follows right away that if the prescribed boundary data

are time-dependent and if n(t) is increasing (decreasing) at any

time to, that is, R(t0 +6) : s(to)(n(to + 6) c Q(to)) for some

6 > 0, then Q(t + 6) D 1(t)(Q(t + 6) c Q(t)) for all t > to. By

picking regions si(O) for which one can determine a priori that

. p . .n > 0 (< 0) everywhere on aof(O), one can then estab-
3n

lish the existence of a steady state solution, assuming that a

solution to the time-dependent problem exists.

The following stability result is also easily deduced.

L ena 2.2: Suppose we have two solutions p, and P2 of (1.31)

with the same boundary data prescribed on MD. Then

U-1(0(t) -C22(0)) U (02(t) - 91(t)) <_O 2.1

Proof: Without loss of generality, we can have

91(0) D n2 (0), and all we need to verify is that

d
taln(t)- n2(t)It.o 0. From (l.31g),

12



d I api

+ f2 O n + k - n~dS

ani

J3Q1(O~ri3 (j-+ k n ndS

- 3 Tn-lD(r + k n ndS

(2.2)

Since aill(O) n 3D a 32(O) n aD D supp pi'3D' P1 P2 >0

a
Vx c D, and ljj{P1 - P2) -0 or p, - P2 a 0 on 3aQ2(O) n 3D, it
follows from (1.311) and (1.31j) that

d a(PI - P2)
HIP(t)- n2(0)It-0- Ja 2 (O-- na -dS

( Pi +'

+ 1(an 1(o)-an2 (o))naDj (in dJ< .23

(2.3) may be combined with lenmma 2.1 to prove (2.1).

Remark 2.1: It seems likely that, if we restrict ourselves

to components of flj and 02 which are connected to aD0 u aD RI we

can get a stronger relation than (2.3), and prove decay of

1Q1(t) - 02(tI to 0 as t + . Indeed, in these circumstances

It appears that for some constant b > 0 we can show that

13



I
l(t) n2(t)1 - bjln(t) - n2 (t)

in which case

1nl(t) - S2 (t)l e'btln(O) - n2 (0)1 (2.4)

I have been informed, in the course of writing this up, that a

counterexample has been given by Alt for components of ni and 12

which are not connected to )Do u 
3DR (Ref. 1).

An immediate consequence of lemma 2.2 is the following: If

the prescribed boundary data are time-independent, the initial

rate of change of a(t) is the largest, that is,

1(((t + 6) - Q(t)) u (Q(t) - Q(t + 6))l _ 1(1(6) - n(O))

U (M2() - f*())~(2%5

Returning to direct consideration of the problem (1.31), we

recall our remark regarding its similarity to the anodic smocth-

ing problem. We found (Ref. 8) that the solution of the latter

problem, at a time t, could be found directly by finding the

steady state of problem (1.7) with uo now dependent on the param-

eter t. Making some alterations and specifications in the steady

state version of (1.7) in order that the result will conform to

the sort of boundary value problem we have been considering here,

we note that the solution to the "anodic smoothing" problem at

time t can be found from the solution of the following elliptic

free boundary problem:

14



0O , x c ({0) c D 0 < t , (2.6a)

(2.6b)
E 0 , x eD , 0 < t < , (2.6c)

= 0 , x 3 D0  , 0 < t < , (2.6d)

C tPR > 0 , x c 9DR  , 0 < t < - , (2.6e)

- tn x E DI , 0 < t < O , (2.6f)

- 0 , x D - (t) , (2.6g)

E and VE are continuous in D . (2.6h)

Differentiation of each of the conditions (2.6) with respect

to t shows that &t satisfies the problem (1.31), except for the

gravitational term -k in (l.31g). If we transform coordinates

and view the problem from a system which is moving downward with
4

unit velocity, the term -k will disappear, but then D will appear

to be moving upward with unit velocity. Thus, the problem is

that of anodic smoothing when the "cathode" is in uniform motion.

It should be noted that the term -k in (l.31g) effects a uni-
form translation of the free surface and has no effect on the

character of Int(a if) with regard to its differential geometric

properties. Thus, the observed relation of the solution of the

time-dependent dam problem to the solution of a sequence of steady

state Stefan problems in a translating region may be useful pri-

marily for what can then be deduced about the regularity of the

free surface from known results for the steady state Stefan

problem, and not for practical calculation.

15



Nevertheless, we can exploit this relation to suggest a

numerical approach to the time-dependent dam problem: Viewed

from a system translating uniformly downward with unit speed,

each point PRN fixed in space is moving upward uniformly with

unit speed, and moves through the distance T in the time interval

[nr,(n + 1)r). Let us denote by an(r) the points thus swept out

N
by a set rc . We define

n n(D)  (2.7)

a region which, for each n, is fixed with respect to the moving

system. Given n(0) c D, we construct 0n according to the follow-

Ing prescription. First we define

- . (2.8)

Then, given fin , n > 0, we find +" by solving

0 , x in . ^n , (2.9a)

, x e -n+D _ n n , (2.9b)

> 0 x c n  , (2.9c)

= 0 , E a ;n(00) n an , (2.9d)

T=PR >  0 , x ;n( DR) n ban , (2.9e)

7na
-
E " an x E an(aBD) n abn , (2.9f)

C 0 x c bn _ 6n+ 1  , (2.9g)

E and VE are continuous In Dn (2.9h)

is determined from

Vn+ _ 1i+1 nD5 1  (2.10)
-n (2no

Finally, the set of points n c Dn, when viewed from the fixed

system at time nT, is a set 0", and we define

16



nn_ nrn nD . (2.11)

Viewed from the system at rest, the region Dn is seen, in

the time interval [nr,(n + 1)t), as a time-dependent region D*(t)

independent of n and given as follows:

D*(t) - (2.12a)

Nwhere for any set r c R , o (t)(r) is defined, for

t E [nTr,(n + I)t), by

a*(t)(r) - j(x,z)f(xz') E r for some

wil then be z ' E [z + t - (n + 1)r,z + t - nr] j2.12b)

n will then be the region n(n ) solving the problem (1.31),

with the following modifications:

n(O) is replaced by a*(O)n(O) , (2.13a)

D is replaced by D*(t) , (2.13b)

aDo is replaced by a*(t)(MDo) n 3D*(t) , (2.13c)

aDR is replaced by o (t)(BDR) n 3D *(t) , (2.13d)

aD Iis replaced by a*(t)(aDi) n 8D*(t) . (2.13e)

If 3D is at all smooth (having, say, piecewise bounded

curvature), the same sort of smoothness (up to boundedness of

curvature) will characterize 3D (t). Accordingly, a priori regu-

larity results will be derivable for p satisfying the modified

version of (1.31), and since D*(t) = DVt, one may deduce the

deviation between the actual values attained by p and Rk on BDan

for the solution of the modified problem, and the values required

in the original problem (1.31). To obtain error estimates for

the solution to the modified problem, as opposed to the solution

17



of (1.31), one need only determine a domain n- known a priori

to be contained for all time In the union of the supports of p

for the modified and original problems, a determination easily

made with the help of lemma 2.1, then find the capacities rela-

tive to n" of various subsets of aDo u aDR and multiply them by

the corresponding errors in the values of p found for those sub-

sets, integrate the error in !P over aDI, and finally make use ofan

lemma 2.2. For cases of interest, we anticipate an error, as

measured by the volume contained between the two determinations

of the free boundary, proportional to T for finite t. If the

expectation of remark 2.1 is borne out, such an error estimate

will, in fact, hold uniformly for all time.

We recall that, If p satisfies a problem like (1.31) for p,

except for the absence of the term -k In (l.31g), then

r,(x,z,t) = plx,z,t')dt' (2.14)
0

satisfies the elliptic free boundary problem (2.6). This is the

transformation used to solve the anodic smoothing problem

directly. (It is somewhat reminiscent of the transformation (1.5)
4.

relating variants of the Stefan problem.) Since the term -k in

(1.31g) has been seen to vanish in a coordinate system moving

downward with unit velocity, the natural adaptation of (2.14) to

the dam problem is the transformation

u(x,z,t) " Jo p(x,z + t - t',t')dt' . (2.15)

When a steady state p(x,z) has been achieved as t -, (2.15)

becomes
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u(xz) J J p(xz + t')dt' (2.16)0

which is precisely the Baiocchi transformation (Ref. 2).

Note added in proof: I have learned since doing this work

that (2.15) is exactly the same as the transformation introduced

by Torelli in a paper by Friedman and Torelli (Ref. 7).

The formal transformation (2.15) is not defined when

(x,z + t - t') j D for some t' c Ot. (The extension of p to

D - 0(t) through the convention that p = 0 there Is quite natu-

ral.) Although a version of (2.15) can be given which is satis-

factory for the time-dependent case in a fairly general region D,

we shall not consider it here. In the next section, for the

steady state case, a version of (2.16) appropriate for more gen-

eral regions D will be considered. For the present, let us

restrict ourselves to the case in which D is the cylinder

(cf. (1.14))

D - Box(0,-) , (2.17)

and also

3D Bo  , (2.18a)

BDo u 3DR - 9Box(O,-) . (2.18b)

in this case (x,z + t - t') e D Vt' E [O,t]. The time-
dependent dam problem (1.31) is then equivalent to the following

problem for u:

u and vu are continuous in D , (2.19a)

u S 0 , x D - (t) , < t < , (2.19b)
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u >. , X D 0 Otc- , (2.19c)

u given , x c aBox(O,- ) , 0 < t < - , (2.19d)

Utz - Uzz given , x e B 0  Z 01 t 1e

1 if (x,z) E n(t) and (x,z + t) P (O)

Au(x,zt) 0 (2.19f)
0O otherwise .

When a steady state u(x,z) is reached, the problem (2.19) reverts

to a form which can be expressed as a variational inequality and

which has been considered already in some detail (Ref. 2). This

problem Is very close to the steady state version of the free

boundary problem (1.7)-(1.8), which can be solved by either algo-

rithm I or algorithm II.

3. Steady State

Our first order of business is to give a meaningful version

of the transformation (2.16) for a fairly general region D. To

this end, we will find it convenient to work with functions

satisfying homogeneous conditions on 8D, and we suppose that we

can write

p =. e + (3.1)zI
where ez has the following properties:

supp(ez) . Ct(aDR) - Ct(9D1 2) c , where we know a priori

that " c Int(n) ,

(3.2a)

Aez 0 V x e D , (3.2b)

ez  0 , x D o  , (3.2c)
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z 0 , x 4E DR 3 (3.2d)

-en " a n , x c OD2 (3.2e)

a_ 0 x 4E 3D1 (3.2f)an Z

Obviously, from (1.31) and (3.2)

0 x e aDo u aDR (3.3a)

, x- D 2  , (3.3b)an 1

Aez < 0 x (3.3c)

0 , x C a , (3.3d)

2n - k * n , xE aDi1 n an . (3.3e)
an

As noted after equation (1.13g), we have S > 0 on 3Di1n an. In

addition, since p L 0 in D and p = 0 on anf, we get from (3.2)

and (l.31g) that

an = k * n > 0 x Eaf (3.3f)

All these conditions imply that

F> 0 , x fl . (3.3g)

It is now natural for us to make the extension

S 0 x D-n . (3.4)

Defining, for all x E RN'.,

Z(x) a sup{z(x,z) D} , (3.5)

we are led, tn our version of the Baiocchi transformation, to con-

sider the function
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[Z(x)
C(xz) * j (x,z')dz' . (3.6)

We will rewrite the steady state problem as a problem for r,

in a form for which a solution algorithm readily suggests itself.

Before we proceed, however, it will be useful to distinguish sev-

eral cases which may arise. It will prove helpful for us to make

the definitions, for x E RN-i,

{z (x)= - a{zl(x,z) E , (3.7a)

Z*(X) - sup(z 1 {Z(X)}) , (3.7b)

{zf(X)l = {zI(x,z) E a3lf . (3.8)

Also we define the set

{zq(x)) = a(zt(x,z) E D) , (3.9a)

whose members are written as

zI(x) > z2 (x) > ... > Zn () (3.9b)

If Z(x) = -, n(x) is odd, and on account of (3.3e) elements

of {zf(x)l can only lie between - and zj(x), or between z21(x)

and z 2 i i(x) for

I s (x) ill < i < n(x) - (xz (x)) E 3D1 u 3DD 2 ' '21ti

(3.10a)
If Z(x) < =, n(x) is even, and elements of {zf(x)} can only lie

between z2 1 . (x) and z2 1(x) for

I S S(x) E II < I < ,x (x,z 1 (X)) e aD1 u 3D11
(3.10b)

If n(x) Is 0, 1, or 2, we see that the number of elements of

{z (x)} is 0 or 2. In the former case {zf(x)} Is empty; In the
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latter it is empty or contains at most one element, z*(x). Note

that if D is convex, we have that n(x) is 0, 1, or 2 for all x.

We shall now restrict ourselves to the case where for each x

the set (zf(x)} contains at most one element, z*(x), and also

where V x

{(xz) e cI(D)Iz - Z(x)} c aD u aDR u aD . (3.11)

Since the more general situation may be posed as a mathematical

problem, we will say a few words about it at the end of this

section. However, there do not seem to be any interesting or

important problems of flows through dams that are excluded by the

restriction we make here.

From (3.11) we have

T - {(x,z) c CI(n)1z = z *(x)} 3 9D1 u aDR u aD I U anf

(3.12)
and thus by using (1.31j) and (3.3) we conclude that at the point

(x,z*(x)), either

> n k * n or ip > 0 (3.13)an - an

The fact that € > 0 on aD12 for sufficiently smooth aD (for exam-

ple, with bounded curvature) follows by getting a contradiction

from the assumption that p - 0 at any point of this set.

Using

i(x,z) - ) *(x,z')dz' (3.14)
Jz

and (3.3), and setting ¢(x,z) 0 for z > z*(x), we get
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W(x,z) - - (x,z) + e(x,z*ix)) .1 (x,z*x))-* IR ix)z
n k

+ V .((xz*(x))vz*(x)) + n k 3  D (3.15)

In the region D u {(x,z)Iz >_z*(x)1. Here s is a Dirac measure

on 3D.

On anf u (T n Int(BD 1 ))

= VC 0 , (3.16a)

and just below this set
I

=- -( x , z ( x ) > 1 (3.16b)
nan

where we get equality just below 3f. Just below T n aDI 1 ,

(3.15) becomes

=I V (p(x,z*(x))vz*(x)) + k3D (3.16D

and just below T n 3D12 ,

> 0 , (3.16d)

V * * (xz((x)zz i()) + W , (3.16e)
n • k

The problem for t near anf, as given by (3.16a) and (3.16b),

is close to the steady state free boundary problem described in

(1.7) and (1.8). It has been seen (Ref. 3) that this free bound-

ary problem may be viewed as the limit as E + 0 of a nonlinear

problem dependent on the positive parameter E and defined on the

whole region D. Since (3.16b) shows that At is not necessarily

constant near af u (T n Int(aDl)), the treatment previously
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given is modified slightly. Near anf u (T n Int(aD1 )) we are led

to consider the c-dependent problem

W() +min( -Ln (cz iX)),'1:gr(()) * 0 ,(3.17)

where

g1(;) S .(3.18)

C 0 <"

The boundary condition is that c() 0 as (x,z) + (xZ(x)). We

may consider the limit as c - 0 of c(c) in (3.17) to be the solu-

tion of the equation

Smin( I >~x*() 0(n - k- n (Xz (xl),-' )

At + -0 .(3.19)

By using monotonicity arguments for elliptic equations we

can show that, if c and 1(c) satisfy the same elliptic boundary

value problem in a region, with the same boundary data, except

for the replacement of (3.16b) by (3.17) in parts of the region,

then

_ + E (3.20)

We now want to look at the behavior of C(c) where 0 < C(e) < E,

and for x such that (x,z*(x)) E anf u (T n Int(nz)). To facili-

tate the discussion, let us make the definition, for a function u,

of

S (u) 3((x,z) DIO t u< . (3.21)
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It follows from (3.20) that S (c(E)) c: S (c). In addition we

define

A {(X,Z) E DK(X.z*(X)) c an u (T ni Int(aD1))l
(3.22)

if I L(,(*W)1  is bounded for x c T n Int(MD1), one sees

that jc(,e)j is bounded, uniformly in c, In A n S E(0,. and thus

one gets equicontinuity of the derivatives vC(c). Hence

v~e)~ vC pointwise , (x,z) c SE(L) n A .(3.23)

Since

sup sup

A = ( - 0 a S 0 0 (3.24)

(3.23) immnediately implies that

E)-0 as E-~ 0 , (x,z) IE S( c) n A .(3.25)

Let the equation of the surface r() Ebe written in the

form z - (), that is,

C( E 'x'z EW) - . (3.26)

Then on the intersection of this surface with A, it will follow

from (3.25) and (3.17) that we have in the limit as E-4 0

a 1 L,(EXZ (X)) - A(E.X.Z (X))

-min~- 3n ,-1, (3.27)

Similarly, we get from (3.25) and (3.17)

- ....L...a4 (Ex,Z) AC(,Z) -- 7 -y -0
-Xk =WO (CXZtXz7+ x j( (328
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Corresponding to (3.17) for c(E) we find the following

equation for *(€) near 30f u (T n Int(OD 1 )):

0 < ()<

() + min I a x 0
(n " ( (3.29)0 C (-E >6

This equation is not useful to compute with, except for certain

special types of boundary data and regions D, such as those occur-

ring in the simplest of the problems studied by Baiocchi and

Magenes (Ref. 2), because of the appearance, at points on aD n an,

of the term =anp(x,z x)), which Is, after all, an unknown of the

pro bl em.

On the other hand, difficulties associated with the fact that

aD and an have a nonempty intersection should be no difficulties at

all, because In that regard the free-boundary aspect of the prob-

lem disappears, and the solution of the problem is straightforward

when the region occupied by the fluid is known. Thus, in order to

see what freedom we may have in using versions of the equation

which differ from (3.29) and may be more amenable to numerical

implementation, let us examine the case when a n .

Suppose we want to solve

A* - 0 X D , (3.30a)

with

*ix,z) 4 0 for ix,z) (x,Z(x)) , x r ,(3.30b)

and other data imposed to make > _ 0 in D. This is not a free

boundary problem, so that (3.3f) cannot be imposed. For € given
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by (3.6),

by x -- xZtx)) , x e r . (3.31)

This can also be viewed as the limit as E - 0 of the solution of

g(c)n+ 1 !_-xZ(x))g (C(,E)) "0 , x E r 32a
n -k E(3.32a)

1.(,xz) - 0 for (x,z) (x,Z(x)) , x r ,(3.32b)

with >(E) > 0 in D. As before, we find that (3.25) holds for all

points for which x e r and C(i) < 6. Hence as 0 - 0 we expect

1n + A4(E xX.Z ()(X))) -!-- XZ(x) )
n k x x (3.33)

In addition, it follows from (3.25) and (3.32a) that

1 -. al( ,x,Z x)) * AC(G,x,Z(x) 0 (3.34)

n. k n

Differentiation of (3.32a) with respect to z yields

1 ~0 < C () 1
A. -x ,z(x)) -0 x r

n . k an(3.35)
0 C(E) > E

Consider now the following variation on (3.32):

A?(e) - h(x)gc(C(E)) + - x,Z(x)) + h(x)) 0 , 3x36a)(3.36a)

(e,x,z) -. 0 for (x,z) -i. (x,Z(x)) , x E r ,(3.36b)

with C(,E) > 0 in D. h(x) is constrained by the inequalities

0< h(x) -I _-xZ(x)) , x r . (3.37)
n.k

The same argument that led to (3.25) holds again, for x E r and

(<) _. Thus wegetas 0
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- 4(-E,X,Z (X)) W(E.XZ (X))
n k

- A~ kx,Z(x)) * x e r , (3.38a)
n *k T

and

- --* (,X,Z(X)) (-E,X.Z(X))
n k

n *k in(3.38b)

Differentation of (3.36a) gives us the following equation for

00 < CxE <

0 E (3.39)

Comparing (3.33) and (3.38a), we observe that we get the same

result in the limit whether we use (3.35) or (3.39), as long as

h(x) satisfies the constraint (3.37).

Now let us return to our problem. We see that we can compute

*cnear anu (T n, Int(aDj)), from the equation

- j ~ ()0 (3.40)

For the more general situation described by (3.15), we are then

led to consider
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- e(XZ) - - (x,z) c D(3.41)
0(6 ) > E

Corresponding to (3.41) we have the equation for c(e),

A (E) + &e(X,Z) - Ae(x,Z(x)) - g (;(E)) + X ,n(ExZ(X))
C n *k

- • (*(E,x,Z(x))VZ(x)) - L (ExZ(x))3D 0 (3.42)
n • k

for (x,z) e D u {(x,z)Iz > Z(x)}. Here, of course, c(c) is given

by

Z(x)
(exJz) - 4(E,x,z')dz' (3.43)

In (3.42), at values of x for which z*(x) Z(x) and we have

prescribed boundary conditions on *(x,z*(x)), the terms

x, xZ(x)) - V .( (,x,Z(x))vZ(x)) -x,Z(x))68D

n kn k

will adjust themselves in the limit as c 40 to leave the equation,

when expressed at z - z,(x), invariant under a suitable change in

the coefficient of g.. However, for values of x such that

Z(x) t z*(x), that is, such that (x,z*(x)) c af, such an adjust-

ment cannot take place, because in the limit as C 0 we will

invariably have

(xZ(x)) -1 (,x,Z(x)) 0 .(3.44)
n k

Thus, the coefficient of g cannot be changed for such values of x

without changing the problem in the limit E * 0. In rough

30



physical terms, this situation arises because on T n OD we have

an outflow, under assumption (3.11), and we can do whatever we

want with the flow as it leaves the region, as long as we do not

create disturbances which propagate back into the region. (When

(3.11) is not satisfied and we have a point e OD2 at which

z*(x) - Z(x) with an inflow, we are still free to make suitable

adjustments in the coefficient of gi n (3.42), as the inflow is

effectively prescribed at such points, through the boundary condi-

tions, independently of such variations.) The limit as e - 0 of

c(E) will satisfy

1 ( .Ex ,Z(x))
+ he(x,z) - A6(xZ(x)) + --- 1 (zax

n - k

-lim V • (-(e,x,Z(x))VZ(x)) - •( 'x'Z(x))6
*k -E4 12 3~6D

-0 , (3.45)
0 =0

where p(E) is given by (3.41) and appropriate boundary conditions

on 9D.

For the purpose of solving (3.41) and (3.42) numerically, we

introduce a pseudo-time variable which we label "t," but which

should be distinguished from the real time appearing earlier in

this paper. Thus, we write In place of (3.41) and (3.42)

*t(.,t) - &~id,t) - hez (x.z)

t(M 0 'C (..t) <
(x,z,t) Dx(0,-)

0t) > C (3.46)
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and

ct(f,t) - A(E,t) + &e(x,z) - Ae(x,Z(x)) - g( (Et)

I a (..t.x:Z(x)) - v .*(,EtxZ(x))VZ(x))

--- *( E tXxZ(X)) aD , (x,z,t) E DX(O,=)
n -k (3.47)

We are now ready to discuss numerical solution of the

problem. However, before we proceed, we should note one further

complication that arises. This is that in the problem (3.3) for

* in the region 9, which we may now replace by a problem for ' in

D through (3.4) and the interpretation of * as the limit of (E)

in (3.41), all the boundary data for * on 3D are homogeneous with

the exception of the data on 3D,1 n 3i, given by (3 .3e). The dif-

ficulty is that we do not generally know the extent of this set

until we have solved the problem. Hence, we shall assume for the

Immediate future that 3D11 = 0, and see how to solve the problem

in that case. Then we will show how an elementary modification

of the algorithm used for the solution when 3D11 = 0 will yield

the solution for the practically important case 3D1 1 $ 0. (There

are, however, cases where we know a priori that 3DI1 c an. In

such situations we can make the appropriate changes in 0, defined
3'p

in (3.2),to get, for ' = p + ez , !* 0, x c aD, instead of

(3.3e). Then the algorithm which we give presently will be appli-

cable without any modification. Such a case occurs when 3D1 = Bo,

given by (1.14).)
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As a preliminary to the discussion of approximate solutions

of the dam problem, we introduce some operators. In view of the

boundary conditions Imposed on *j in (3.3) and our tentative

assumption that aD1  , we start with the operator S0(t)

defined as follows:

is the solution of the initial value problem

g t 4~,E (X~t) -E DX(O,.) ,(3.48b)

& 0 , (X~t) E OD0 U aD,)x(0,o) , (3.48c)

i.-0 , (X,t) E 3DjX(0,-w) ,(3.48d)

It follows, then, that the solution of

*t-A - hez , (x~t) e Dx(O,-) , (3.49a)

=0 , (x~t) E (3D, u 3D R)x(O"m) , (3.49b)

=0 * (x,t) - aDIX(O.e) ,(3.49c)

*(t) z *0(3.49d)

is given by

*() S~t*O- (JO SO(t')dt' ) AZ , (3.49e)

when 69 is independent of t.

Next, let us Introduce the operator S(t) defined by

(S(tkco)(x~z) 1 St)Cz))(x ,z')

- (JO SO(t')dt')&ez)(X'z')jdz' (3.50)
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S(t) is a semi-group:

s(t1 + t2) " s(t1)s(t2) . (3.51)

Re2i'k 3.1: In various problems we may want to work with

one of the norms

N1 (u) J ( uzjdxdz (3.52a)

or

N2 (u) R N uz(x,zfldz (3.52b)

We observe that the operator S(t) is contractive in NI:

NI(S(t)u I - S(t)u 2 ) < N1 (u1 - u2 ) (3.53)

In general this Is not true in N2 . A case for which S(t) is con-

tractive with the norm N2 is the case D= BO, as given in (1.14

Remark 3.2: Except for special cases, such as that for

which

{xI(x,z 2 ) E CE(D)n IXI(x,zI) E CZ(D)l if z2 >z and 3DI B- 0
(3.54)

it Is not generally true that the operator S(t) is monotone:

I(XXX)) - C2(x,Z(x)) -.0 1 > 2

4*(S(t)C)(,Z(x)) - (S(t)C2)(x,Z(x)) - 0

S~)C LSMt 2S~t) ,, (3 .55)

The case (3.54) does not appear to be of practical interest.

However, we have a different type of monotonicity:

C1(x,Z(x)) - 2 (x,Z(x)) - 0 , _.2 ' z -- 2Z

=-_>(S(t)l)(xZ(x)) - (S(t) 2)(xZ(x)) = 0

s(O t) ,s(t)C2 (s(t)41)z :L (s(t)C2)Z •
(3.56)
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We also introduce the operator P(T)(T 3 0):

P(T)c - T (3.57)

and the operator M:

Me max(€,0). (3.58)

(With this notation, (1.9c) can be written

v n+  " Mp( )S2 (T)Vn (3.59))

Renwck 3.3: It is not generally true that the operator

MPI() is contractive in either of the norms N, I = 1, 2, given in

(3.52). However, if CZ - 0, C2z 0, and c,(x,Z(x)) =

42 (x,Z(x)) - 0, we have

Hf( P( T) CI - M P( k) 2 ) !- 1( 1  - ¢2 ) , 2 -1, 2 .(3 .60)
Also, monotonicity holds:

CI(x,Z(x)) - C2 (x,Z(x)) = 0 , €1 Z2 C 1Z -.S 2Z

(MP( ) 1 )(xZ(x)) - (MP(T)C2)(x,Z(x)) - 0 , MP( )C1

>_ P(T)C2 (,P( )1z f (Mp(T)C2)z
(3.61)

Because of the frequency with which we will use the

monotonicity relations (3.56) and (3.61), we shall use a special

notation:

1 Z. *2 if and only if C1(x,Z(x)) - t2(x,Z(x)) = 0

C1 Z . t2 , a nd C <- : 2z

(3.62)

In words we will say that 41 is more * than or equal to C2, C2

is less * than or equal to C1, etc.
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Let us now turn to the dam problem, taken to be the limit of

(3.46), (3.47) as e 0. We generate approximate functions

ln(x~z) and jn(x,z), which are supposed to approximate p(x,z,nT)

and r (x,znr),. respectively:

n n(xz) - (x~z,nr) .(3.63a)

i~and C will be required to have the following properties:

C n(XZ(x)) _ 0 ,(3.64a)

n> 0 .(3.64c)

Our solution of (3.46), (3,47) is done by a "split-step"

scheme. Note that if (3.46) were just

with the boundary conditions (3.3) and the assumption aD1 1

we would have simply

(n+ l)T) ( S(-[)kj Zx idx~z',nT)dz' ))Z . (3.65)

In that case,

r((n + I)T) - S( )c(nT) (3.66)

would solve (3.47) except for the term -g.(rW. (Note that

C Zw 0 =>S (t) >* 0 (3.67)

as long as ae 0, as required in (3.2b).) We approximate the

effect of the term -g.(0j, acting over a time T, on c by the

operator P(T). Then, in view of the fact that we are to have

C n+i >* 0, we operate on the result by M, since any violations of
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this condition can only be due to errors in the split-step scheme.

Tfuis, our algorithm is

Cn+1 , Mp(r)S(r)tn * F n+,o (3.68a)

where

Ft = MP(T)S(T)c .(3.68b)

Thus the procedure for solving the dam problem is just a varia-

tion on algorithm 11 of section 1 for the diffusion-consumption

problem. This method has been called the "truncation method" in

the literature (Ref. 3).

It is not hard, given a particular dam D and particular

boundary conditions, to find functions C" and C+ such that

F;" >(3.69a)

++
F + < +(3.69b)

(For example, r" B 0 always works; so does

+ Z~(X) ++
+(xz) 1 J .+(xz')dz' where * (x,z) satisfies

A* MAe , X eD+

+ =0 , x aD o uaL ,

an
and Z(x) may be taken to be Z(x) when Z(x) < -; Zmay be taken as

a suitable finite bound when Z(x) - chosen so that the integral

for C is finite.) Then the sequence (Fn) "} will be nondecreas-

ing * and the sequence {Fnc+I will be nonincreasing *. Further,

with the definitions

mn * (Cli.2) " min(-z(xz') , -2z (x,z')dz ,
z (3.70a)
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z(x)
max * ( 2) - max( z (xz') , 2z(XZ')) d z '

"z (3.701b)

we see that

Fn max * (c, +) >* max * (FnC,F n + ) (3.71)

From the contractiveness of F in N1 , as shown by (3.53) and

(3.60), one may deduce

NI(Fn -) <N (max * (FnC',Fn+)) S N (max *

< Nj(C') + Nj( *) ( 2

n (3.72)
so that the nondecreasing * sequence {Fn C) is bounded from

above * and hence converges. Clearly the nonincreasing *

sequence {Fn + I also converges.

Denote by C a function with the properties c(x,Z(x)) = 0 and

z < 0, and which is a fixed point of F:

= = MP(T)S(T) . (3.73)

There is at most one such , since if there were two, -1 and c2,

we would have
Nl( - z) = N1(MP(t)S(T)-I - MP(T)S(T)z 2) < N(S(T)-i - S(T)2.

)- (3.74)

However, from the definitions of S(T) and N1 in (3.50) and (3.52a

respectively, one sees that, as long as BDo u 3DR 0 , there is a

constant c(T) > 0 such that

NltS(-)ul - S(t)u2 ) < e'c-)Nl(ul - u2 ) . (3.75)

Inserting this into (3.74), we get that Nj(E 1 - -2) - 0, or

€* - €2. This is not an assertion of uniqueness of the steady

state solution of the actual physical problem, but of uniqueness

of the approximate steady state solution generated by (3.68).
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Remark 2.1 mentions the problem of uniqueness of the steady state

solution of the physical dam problem. (Elementary analysis shows

that, for some characteristic dimension a of 1),

c(t) - e-a2/ t  (3.76)

will work. However, this is a very conservative estimate. The

pseudo "time-dependent" problem of (3.46) and (3.47), the solu-

tion of which is approximated by (3.68), is different from the

actual time-dependent problem discussed in the last section.

However, as C(t) in (3.47) begins to converge to c, supp ;(t)

will vary slowly, and the operator F in (3.68b) will look at late

times like the operator

Fu =_ X supp CMt)S(t)u (3.77a)

where

(XEM)(x.z) - z X F(x' )(-Uz (x'z' ))dz' (3.77b)

for any set E c RN'x(0,-). Repeated application of the operator

generates a function such that

A(- z )  A z  , x c supp c(t) , (3.78)

(Ref. 10), and thus for p given by (3.1), Ap - 0 in supp c(t).

Hence, at late time, the free boundary does evolve in a manner

similar to the evolution of the free boundary in the real time-

dependent problem. In such a case, by remark 2.1, we may expect

n-
an exponential convergence of C to c as n -. =, for the case when

all components of supp c are connected to aDo u aDR, and we take

a nondecreasing sequence to get to Z.)
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We can do the split-step scheme (3.68a) generating rn+

from to in reverse order to get
;n. =(S(T.)Mp(T))n~~ (3.79)

which converges to ' as n =. It is clear that

=S() , " MP(t) " , (3.80)

and thus

C - _ _ _ (3.81)

In the relatively uninteresting case (3.54) where the operator

S(t) is monotone, we can show that the true solution c satisfies
I~ < < ,

and thus use (3.81) to obtain an error estimate. This sort of

estimate was given already in (1.11) for algorithm II, and we

have essentially reproduced its derivation (Ref. 3). Unfortu-

nately, for the general case not covered by (3.54) we do not gen-

erally expect V to be an upper bound for . Indeed, we would

anticipate that -' < C at points in D near to the interior of

T n aDR.

We have not at this time produced an error estimate for the

difference between T and c, the solution of (3.45). The follow-

ing steps indicate how we would proceed to get a precise estimate.

Step 1. We observe that (3.73) can be written, with

supp t n D, as

T~ = XS(T)* . (3.82)
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Also, we note that, given regions nl and n2 c nlI, the solutions

of

U1 a X IS(T)zi , C2 - 2S(T),2 (3.83)

satisfy, for Aez < 0,

€It 2 (3.84)

Step 2. A check of (3.82) and (3.78) shows that -z "

satisfies the correct differential equation in -6. Thus, the main

task involves checking to what extent the boundary conditions on

C are satisfied by Z. Denoting by T the set of points on the top

of On,

I={xz C, , sup
•(xz) f Cz(?i)Jz - z' , (3.85)

(x,z ) 6:

we have no difficulty in verifying the condition

Z(x,z) - 0 , (x,z) C T , (3.86)

from (3.73). The error with which the other boundary conditions

hold on parts of alf near aD may be ascertained without too much

difficulty. The only problems arise on parts of a0 which remain

uniformly removed from aD in the limit T o 0. We label these

parts of al as Of-f.

Step 3. Since we do not have any a priori estimate of the

regularity of 9f, we may consider a modified algorithm which

always generates a "smooth" boundary. The deviation of the solu-

tion generated by this modified algorithm from c can be bounded

by using a variation on the monotonicity arguments and operators
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introduced by Brezis, Berger, and Rogers (Ref. 6) to study error

bounds for approximate solutions of the Stefan problem. We let

and

For a set E cD, we define

U () (x~z)I U(( ) x(E)dz)) , ..l (3.88)
zz

If DD has curvatures bounded in magnitude by 116, the set

U-U +E is the complement of the set of points in the complement of

E' through which the surface of a closed ball of radius 6 can be

passed In such a way that the whole ball lies outside E. The

boundary of U'U+E FIs generated by rolling a "marble" of radius 6

over the boundary of E, keeping the marble outside E.

When u. 10 and u(x,Z(x)) 0, we have

MP(r)Uu >z*U+XU + xZuTu >* + XU{( + ~i u >* U +MP(rE)u
6 6 6 -(3.89)

One may consider, in place of (3.68), the modified algoritm

=xn F xn0 Co (3.90a)

where

As n + , will approach a "steady state" Zx satisfyingxx
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it is clear from (3.84) that
x * , (3.92)

and moreover Ilk supp rx n D has the property that parts of asix

which project into If will be smooth.

xTo bound NI(Z x - 0--, we may formulate a third algorithm,

according to which a quantity (,+)n is constructed as

(,*)n = (F+)n;o , (3.93a)

where

F = MP(T)(S(r);k (3.93b)

and the operator S(T) is required to satisfy

S(T)+U + > * U +S(,r)c (3.93c)

Then, upon setting o- 0 in (3.68), (3.90), and (3.93), we obtain

for the steady state of (3.93),
-+ *-- *_

SCx (3.94)

and we can bound N - " - ) by Nl(€C -'C).

We may find an appropriate operator S(T), by replacing Aez

and So(t) as they occur in (3.50) and (3.48) by (Aez)+ and So(t);,

respectively. (For example, in the case where 3DI = I, we may let+I

D+ U + Din the definition of So(t)+ and we may let (Ae)+ = U+Ae.)

Given So(T)+ and (ae ) one can use, for u2 > 0,

MP(T)(ui + u2) < MP(T)u1 + u2  (3.95)

-* to get

43



(F+)n~i(O) - Fl+l(0) _* Jo J8n4.i)+

" So(t)(-Aez )]dtdz',S [z(x)I * SM (A +

-So(t)(-Ae z)]dtdzl
u er* bundon + _ (3.96)

This last bound is seen to be an uppe o 6  3 .>* 0.

It may be evaluated directly by observing from (3.48) that

= So(t)dto

satisfies (if 3D0 u 9DR t 0)

AT = - € , x E D , (3.97a)

T = 0 , x E aDo u aDR , (3.97b)

n 0 x E DI  (3.97c)

Finally, one may obtain

Nl-+- -4) <i - +6 ) + 4 Jdxdz , (3.98)

where is a suitable region for which the integral can be

bounded and which we know a priori to contain supp

Step 4. It is obvious from (3.91) that x = 0 on the setx

Tx = (xz)E Ct(x )IZ = sup z (3.99)
X (x,z') E

x

It can also be shown (Ref. 10) that for given 6, and T - 0,

*-x)z-0(- ti on {(x,z) eTx 1dist((x,z),aDR u D) > 61
(3.100)

Regarding the free boundary condition, that Cx - I just below

the set {(x,z) e Tx jdist((x,z), aD) > 61, that will follow, in the

limit as r -o 0, directly from (3.91).
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Our guess is that careful handling of all the estimates will

finally yield, for the NI norm of the difference between C and ,

a result which is 0 n 1).

To this point we have assumed that aD1 1 u l* Let us now see

how we may modify the algorithm (3.68) when 3D11 $ I. The follow-

Ing scheme may be used.

So(t) is still given by (3.48). Let Go(t~x,z,xz) be the

derivative of (So(t)to)(x,z) with respect to to(,):

(SoMt)o)(XZ) = JD Go(tqxpzqixqi)Co(X ,i)d~di"  (3.101)

We next introduce, In place of S(t) in (3.50), the operator

Z(x)

-(J So(t )dt ) he4(x~zI)
(( o t

-J ( J GO(t' ,x,z' ,i)dt'k - n(Z,z)d9 dz'
(3.102)

S (T) is the operator that would be appropriate in the computa-

tional algorithm if anz n aDI1 . In general this is not the case,

and it does not generally follow from _ 0 that S*(T)co >* 0.
Since we want the iterative solutions we generate to satisfy

* Cn !* 0 (nonnegative pressure), we shall replace (3.68) in the

case aD11 f I by
C*n F F*nte , (3.103a)

where
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i*
F - P(T)MS(T) (3.103b)

and

Mt C max * (C,0) . (3.103c)

Remark 3.4: The various algorithms (3.68), (3.90), (3.93),

and (3.103) may be replaced by alonrtthms where in place of

S0(t) given by (3.48), we work solely with semi-groups for the

diffusion equation in RN-ix(O,-). Operations with such semi-

groups are interspersed with multiplication by operators XE for

given sets E, defined in (3.77b), to approximately satisfy the

Dirichlet conditions on 8D, and also with multiplication by suit-

able reflection operators, to approximately satisfy the Neumann

conditions on the remainder of 3D.

For the sake of mathematical completeness, we will discuss

the case where the set {zf(x)) defined In (3.8) may contain more

than one element for a given x, and where the condition (3.11)

need not hold. The essential difference In our approach will

involve replacing the operator P(T) in (3.103) by something more

compl icated.

Given quantities zl(.), z2('), and a function u(.,z), we

define, for zj(.) > z2(.) > 0,

0
Z > zl(.)

U(zl('),z2('),z;u(',z))- min(u(.,z) - U(',Zl(')),T) . (3.104)W.() 1 z I_ z2(.)
min(u(.,z2(.)) - u(',zl(.)),r)

Z2(°) > Z 1 0
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We recall that we defined the sets of integers SD(x) In (3.10a)

and (3.10b), according to whether n(x) was odd or even.

Let the operator Q(r,x) be defined by

(Q(-,x)u)(x,z) - u(x,z) - u(-,zl(x),z;u(xz))

- a U(z 2 (x),z 2i+I(x).z;u(x,z))
ieS (x) (3.105a)

D

for Z(x) * -, and by

(Q(,x)u)(x,z) - - 1 (z21. 1 (x),z 2i(x),z;u(x'z)) + u(x,z)
tESDlx ) (3.105b)

when Z(x) < -. Finally, in the general case we replace (3.103) by

Cqn = FQno , (3.106a)

where

FQ- Q(r'x)M SI )c (3.106b)

4. A Different Problem

We shall consider a variation on the problems discussed

heretofore, but only for the case 3D2 = 0, where 3D2 is defined by

(1.20) and (1.21). Suppose the boundary values of p, prescribed

as PR on 3D in accordance with (1.13d), are increased to

P ' PRX(aDe) + p , (xz) Do u 3DR ( 4.1a)

p' >0 ((xz) e aDjp' >0 r c Do u 3D b
• -- 4•lb)

" If we restrict our attention to components of Ca such that

n n (;DO u 3DR) * I, we obtain

l p6  -p 0 on 3af (4.2)
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On the other hand,

P -0 , (x,z) ! (aDO u 3DR) nn - r , (4.3a)

0 , (x,z) e aD1 n an (4.3b)

We get p' _> 0 on aD! n an, since otherwise there would be a viola-

tion of (4.3b), and thus from (4.1)-(4.3),

I .n-S<c 0 . (4.4)

J(aDoUaDR)nan-r an

According to (1.31a), * = - p - z, = - p- z, and

-p, . (4.5)

Thus

J(aDouaDR)nan-r an

Since W 0 for (x,z) e 3D, n a, (4.6) impliesa)n

4-4S > 0 .(4.7)
aDn3(-r an -

Now we use the facts that A$' = 0 in 0 and n  0 on agf:

J 6nn JcS + Ja cS <O 0 (4.8)frna an a-f

In n - a we have A$A = 0 and the boundary condition 0 on

af leads to

an a± dS . (4.9)
B s of t J(-nlnaD an

Because of the condition (1.31J), the assumption 3D2 * P. and the

fact that__- 0 on a(B - n) n lD 1 , we get

JS 0 (4.10)
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Thus one derives from (4.8)-(4.10) that

Jrn i, -dS + S O . (4.11)

frn~ an a rnn~nran

In physical language, (4.11) establishes the monotone

Increasing dependence of the flow into the dam across r on the

pressures prescribed on r. Now we may imagine a problem in which

r Is the boundary of D with a reservoir, whose height is not

known but across which a total flux is prescribed. Part of the

problem Is to determine the height of the reservoir. If one

establishes upper and lower limits for the reservoir height, such

that at the upper limit the flow out of the reservoir will be too

large and at the lower limit the flow out will be too small, then

the monotonicity just deduced establishes the existence of a

unique reservoir height for which the flux condition is satisfied.

0(
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